Dr. Matthias Nagel, Dipl.-Betriebsw. Robin Prosch
Strategisches Controlling
Im Controlling der nahen Zukunft wird es darum gehen, wie "intelligent" ein Unternehmen Umfeldsignale und Risiken analysiert, um Potenziale oder Gefahren zu prognostizieren. Wir wollen deswegen zunächst 2 unterschiedliche Controllinginstrumente näher betrachten, die mit heutiger Rechenleistung, Möglichkeiten der Datenerfassung und Analyse für die Unternehmen anwendbar geworden sind und bei der strategischen Ausrichtung helfen können:
- Predictive Analytics:Der methodische Blick in die nahe Zukunft durch das Fortschreiben von Entwicklungen. Er zielt darauf ab, durch die Identifikation und Analyse von qualitativen wie quantitativen Signalen im Umfeld eines Unternehmens Diskontinuitäten, Muster und Abhängigkeiten zu erkennen. Auf diese Weise können durch den datengestützten Einsatz mögliche zukünftige Ereignisse im Controlling und Technologiemanagement vorhergesagt und potenzielle Handlungsmöglichkeiten bewertet werden.
- Risikobewertung von Unternehmen durch die Nutzung aktueller Firmenbewertungen aus Internet-Daten (Big Data)
Anschließend zeigen wir an einem aktuellen Beispiel, dass das Controlling – aufgrund der beschriebenen Komplexität und des ständigen Wandels – lernen muss, mit einer "unangenehmen Unschärfe" umzugehen und sich stärker kollaborativ auch über Unternehmensgrenzen hinweg auszurichten. Eine Möglichkeit sich dieser Unschärfe zu nähern, bietet die Zukunftsforschung, die von einem qualitativen Standpunkt aus verschiedene wahrscheinliche und wünschenswerte Zukunftsbilder zur gegenwärtigen Entscheidungsfindung entwickeln kann.
2.1 Einsatz statistischer Methoden mit riesigen Datenmengen
Daten, Daten, Daten
Wir leben in einer Dekade, in der uns viele strukturierte und noch mehr unstrukturierte Datenbestände zur Verfügung stehen. Ein Ende des Wachstums ist nicht abzusehen. Um dieser komplizierten digital-analogen Komplexität Herr zu werden, überlassen wir immer mehr Steuerungsprozesse Automaten und Algorithmen. Damit in Unternehmen weiterhin operative oder strategische Entscheidungen getroffen werden können, wurden analytische Konzepte und Business-Intelligence-Systeme entwickelt, die vor allem strukturierte Daten über das eigene Unternehmen und den Markt sammeln und analysieren. Zunehmend werden diese Anwendungen auch eingesetzt, um Muster und Abhängigkeiten in Datensätzen zu identifizieren, um damit Vorhersagen oder Handlungsempfehlungen zu erhalten.
Predictive Analytics
Predictive Analytics oder Predictive Modeling bedient sich statistischer Methoden und des Data Minings, um aus Daten Informationen zu extrahieren und damit Trends sowie Muster zu prognostizieren. Die Ergebnisse hängen stark vom Modell, den Daten und den Annahmen ab. Um unbekannte Ergebnisse zu prognostizieren, werden die Verhältnisse zwischen erklärenden Variablen und vorhergesagten Variablen auf Basis vergangener Daten beurteilt. Man lernt also aus bekannten Daten und bleibt damit mit den Ergebnissen eng im System. Strukturbrüche, wie im Fall der Naturkatastrophe in Fukushima, sind damit natürlich nicht vorhersagbar. Abb. 2 führt dafür generische Einsatzfelder auf.
Abb. 2: Einsatzfelder von Prädiktiver Analyse
Zu diesen Einsatzfeldern einige illustrative Beispiele.
Trendanalyse im operativen Controlling
Ein in Unternehmen üblicher Anwendungsfall ist die Fortschreibung betrieblicher Kennzahlen. Im Beispiel von Abb. 3 werden Kostenarten im Unternehmen (dargestellt als Farben) der letzten Jahre durch Zeitreihen, die zyklisch mit einer Periode von 12 Monaten verlaufen modelliert. Die Daten stammen aus dem ERP-System des Unternehmens und haben alle einen Zeitbezug. Liegen ausreichend Daten aus mehreren Jahren vor, lassen sich daran Zeitreihenmodelle anpassen. Üblicherweise werden die Zeitreihendaten in eine Trendkomponente und Saisonkomponente und zufällige Anteile zerlegt. Diese Komponenten werden aus den Daten geschätzt. Damit ist dann eine Prognose des aktuellen Jahresverlaufes nach Monaten mit Vertrauensbereichen und des saisonbereinigten Trends möglich. Analog kann man aus den historischen Daten im Unternehmen den zu erwartenden Gewinn, Umsätze, Personalbedarf etc. prognostizieren.
Abb. 3 Kostenprognose
Solche ökonomische Zeitreihenmodelle, die äußere Einflüsse eher nicht berücksichtigen, sind seit Jahrzehnten methodisch "State of the Art", dennoch werden sie in ERP- und FiBu-Software erstaunlicherweise nur selten angewendet.
Predictive Analytics: Lernen aus Unternehmensdaten
Ein international tätiges Logistikunternehmen wickelt Aufträge über See-, Luftfracht und Straße ab und verfügt allein in Deutschland über mehrere Standorte. Das Volumen der abgewickelten Aufträge sowie die Betriebsergebnisse sind stark von der internationalen Wirtschaftslage abhängig. Im Detail sind zahlreiche weitere externe Einflussgrößen wie Kunde, Standorte, Transportwege, Art und Anzahl der Artikel sowie deren Verpackung im Unternehmen bekannt.
CART-Algorithmus
Insofern ist es naheliegend, sich diese Einflussfaktoren auf den Profit im Detail und in ihrer Wechselwirku...