Das Verfahren ist recht einfach und schnell erklärt: Unabhängige Parameter eines Modells (beispielsweise der Absatz oder der Preis in einer Deckungsbeitragsrechnung) werden anstatt mit absoluten Planungswerten mit statistischen Verteilungsfunktionen wie der Normalverteilung, der Gleichverteilung oder der Dreiecksverteilung belegt. Zusätzlich werden Einzelrisiken zum Beispiel mit Schadenshöhe und Eintrittswahrscheinlichkeiten bewertet (in der Regel als binäre Risiken). Diese Risiken wirken auf die Ergebnisgröße oder alternativ auf mehrere Positionen des Modells, falls eine differenzierte Wirkungsanalyse vorgenommen wird.
Aus diesen verschiedenen Teilrisiken und den Schwankungen der Modellvariablen soll nun ein Gesamtrisiko ermittelt werden. Dies sind Ergebnisschwankungen (->Überschuldungsrisiko) oder Zahlungsmittelschwankungen (->Illiquiditätsrisiko). Dazu werden die Definitions- und Verhaltensgleichungen des Planungsmodells genutzt. Dies ist beispielsweise das GuV-Schema zur Ermittlung des Value@Risk auf der Basis des Betriebsergebnisses oder des Cashflow. Der Value@Risk (VaR) ist der absolute Verlust einer Zielgröße, der innerhalb eines Zeitraums mit einer festgelegten Wahrscheinlichkeit nicht überschritten wird.
Je detaillierter das Modell ist, desto besser lassen sich die Wirkungen der Risiken lokalisieren. Damit steigt aber auch die Komplexität, sodass hier eine Balance gefunden werden muss.
Es gibt eine Herausforderung, die es zu lösen gilt: Man kann Risiken und Verteilungsfunktion nicht so einfach aggregieren. Zwar lassen sich gleichförmige Verteilungsfunktionen wie die Normalverteilung durchaus addieren. Bei höchst unterschiedlichen Risiken ist diese Gleichförmigkeit jedoch kaum zu erwarten. Dies ist aber für eine Value@Risk-Berechnung unbedingt notwendig. Die kumulierte Eintrittswahrscheinlichkeit stochastisch unabhängiger Ereignisse wird durch die Multiplikation der Einzelwahrscheinlichkeiten ermittelt. Worst- oder Best-Case-Betrachtungen auf der Basis von Verteilungsgrenzwerten, wenn es sie überhaupt gibt, greifen somit ins Leere, weil damit Situationen beschrieben werden, die praktisch unmöglich sind. In der Einzelbetrachtung sind in diesem Fall Quantilsbetrachtungen (zum Beispiel 95 %-Korridore) hilfreich, in der Gesamtsicht aus dem oben genannten Grund jedoch nicht.
Man behilft sich daher häufig mit einer Multiplikation von Schadenshöhe und Eintrittswahrscheinlichkeit. Aber mit der Mittelwertbildung geht viel Information verloren. Was nutzt der Einbezug eines einprozentigen Abzugs eines Schadens in der Plan-GuV, wenn dieser (beim zugegebenermaßen unwahrscheinlichen Auftreten) die Existenz der Unternehmung infrage stellt? Und es ist nicht mal so, dass mit der Aggregation dieser Mittelwerte ein stochastisch korrekt ermitteltes wahrscheinliches Ergebnis herauskommt.