Marcel Graf, Holger Müller
In den 1980er bis in die 2000er wurde die Fertigungstiefe in Unternehmen teilweise erheblich reduziert. Dies geschah durch eine Konzentration auf die unternehmenseigenen Kernkompetenzen. Im Gegenzug führte dies dazu, dass Lieferanten nun einen sehr hohen Anteil der Wertschöpfung am Endprodukt erbringen. Beispielsweise beträgt der Wertschöpfungsanteil der Lieferanten in der Automobilindustrie aktuell 70 bis 80 % an einem Pkw.
Parallel dazu stieg die Bedeutung der Beschaffung, da sie den aus den Zulieferungen resultierenden Kostenblock im Unternehmen verantwortet. Die Aufgabe der Beschaffung darf aber nicht auf die Einsparung und Vermeidung von Kosten reduziert werden. Denn globalisierte Lieferketten stellen ebenso hohe Anforderungen an das Risikomanagement im Beschaffungsbereich. Und nicht zuletzt sind die Unternehmen auf Innovationen und Beiträge zur Nachhaltigkeit durch die Lieferanten angewiesen.
Zudem sehen sich Unternehmen im Allgemeinen und die Beschaffung im Speziellen mit einem kontinuierlichen Anstieg des Datenumfangs ("Big Data") konfrontiert. Neben unternehmensinternen Daten spielen insbesondere Daten aus den Lieferketten, aus Märkten und deren Umfeld eine große Rolle. Die Kombination aus wachsendem Datenumfang und gestiegener Bedeutung der Beschaffung macht eine tiefergehende Analyse der Daten unabdingbar für den Erfolg. Dennoch werden Data-Science-Potenziale in der Beschaffung und im Beschaffungscontrolling noch zu selten genutzt.
Typische Anwendungsgebiete des Controllings wie Reporting, Budgetierung, Soll-Ist-Vergleiche oder die Erstellung von Prognosen setzen qualitativ hochwertig strukturierte und verknüpfte Daten voraus. In Beschaffungsvorgängen wird jedoch aus Rationalisierungsgründen im Tagesgeschäft zum Teil auf Metadaten wie z. B. Hinterlegung der Materialgruppe bei Kleinstbestellungen verzichtet oder es werden mitunter Dubletten angelegt, z. B. indem Lieferanten mit unterschiedlichem Namen erfasst werden.
Zudem sind beschaffungsrelevante Daten aus Bestellvorgängen, Qualitätsmanagement und Logistik häufig nicht sinnvoll materialbezogen miteinander verknüpft, da unterschiedliche Abteilungen für die Aufgaben verantwortlich sind. Bei externen Daten verschärfen sich die Probleme zwangsläufig weiter, da diese oft unstrukturiert vorliegen, wie z. B. positive oder negative Posts über Lieferanten in sozialen Medien. Dadurch wird nur ein kleiner Teil der Daten effektiv genutzt.